skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stinson, Victoria P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans (Ed.)
  2. Piyawattanametha, Wibool; Park, Yong-Hwa; Zappe, Hans (Ed.)
    Recently, two-photon polymerization has been successfully employed to fabricate high-contrast one-dimensional photonic crystals. Using this approach, photonic bandgap reflectivities over 90% have been demonstrated in the infrared spectral range. As a result of this success, modifications to the design are being explored which allow additional tunability of the photonic bandgap. In this paper, a one-dimensional photonic crystal fabricated by two-photon polymerization which has been modified to include mechanical flexures is evaluated. Experimental findings suggest these structures allow mechanically induced spectral shifting of the entire photonic bandgap. These results support the use of one-dimensional photonic crystals fabricated by two-photon polymerization for opto-mechanical applications. 
    more » « less
  3. Digonnet, Michel J.; Jiang, Shibin (Ed.)
    Plasmonic metasurfaces composed of arrays of rectangular metallic bars are well known for their strong optical response in the infrared spectral range. In this study, we explore the polarization sensitivity of plasmonic metasurfaces for encoding information. The polarization-sensitive optical response depends strongly on the orientation of the metallic bars allowing the encoding of information into the metasurface. Here we demonstrate that a 2-dimensional polarization encoded metasurface can be obtained by using mask-less two-photon polymerization techniques. This novel approach for the fabrication of plasmonic metasurfaces enables the rapid prototyping and adaptation of polarization sensitive metasurfaces for the encoding of multiplexed images. 
    more » « less